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Abstract

Several multigrid schemes arc considered for the numerical computation of viscous

hypersonic flows. For each scheme, tile basic solution algorithm employs upwind spatial

discretization with explicit multistage time stepping. Two-level versions of the various

multigrid algorithms are applied to the two-dimensional advec_ion equation, and Fourier

analysis is used to determine their damping properties. The capabilities of the multigrid

methods are assessed by solving three different hypersonic flow problems. Some new

multigrid schemes based on semicoarsening strategies are shown to be quite effective

in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high

Reynohls number flows. These schemes exhibit good convergence rates for Reynolds

numbers up to 200 x 106 and Mach numbers up to 25.
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1 Introduction

Over the past h'w years the need fi)r efficient numerical methods to solw_ the equations

governing hypersonic viscous flows has become very obvious. Mostly, flow solvers used in

current aerospace programs, such as X-30 or SAENGEII, exhibit slow convergence towards

the desired steady-state solutions, which leads to high computer costs, long turn-around

times, and a slowdown in the efforts to design these vehicles. Tile reason fl)r this is the

appearance of flow phenomena with very different scales and with highly nonlinear behav-

ior. We mention here the laminar anti turbulent boundary layers at very high Reynolds

numbers and their interactions with shocks and slip lines, and fllrthermore, shock/shock

interactions which generate complex flow fields. Many numerical techniques which were

developed to assist convergence of subsonic or transonic flow calculations are found to be

inappropriate for hypersonic fl()w applications. For examph;, the time step of many explicit

and implicit schemes, which allows the transient behavior of strongly nonlinear hypersonic

flow phenomena to be captured, is highly limited. Consequently, thousands of time steps

are needed to converge t.hc thin boundary layers.

A particular method which was successfully developed to accelerate convergence for

a broad range of flow problems at both subsonic and transonic speeds is the nmltigrid

approach. This method, which uses a sequence of successively coarser meshes in order to

propagate disturt)ances throughout the flow field, combines nicely with explicit multistage

time-stepping schemes [1]. Good convergence rates were obtained for inviscid flow and,

later on, for viscous flows also [2-4]. Initial attempts to apply this promising n_ethod to

hypersonic flows failed for several reasons. Primarily, the shock capturing capal)ilities of

_he central-difference scheme used in I1-4] wet(, found insuftqcient to resoh'e s_,roug shocks.

Subsequently, the shock detection mechanism built into the central-difference scheme was

improved in [5,6]. In order to have strong shocks and slip lines resolved with fewer com-

putational points, the central-difference scheme was replaced with an upwind-type scheme

in [7-9]. Since the high-frequency damping properties of upwind schemes are generally less

controllable compared with central-difference schemes, a variant of the standarcl multigrid

approach was also used in [8,9]. With this variant, additional coarse meshes are generated

by semicoarsening in the different coordinate directions. This strategy was fi*lt neccessary

to alleviate convergence problems associated with the high-aspect-ratio cells of the com-

puta.tional mesh. An additional prot)lem encountered is that very high tc'mperatures can

occur in the stagnation region and near the surface at high Mach numbers; and hence,

the time step of explicit schemes may be severely restricted by the viscous stability limit.

It was found [6,8,9] that tile viscous time-step limit can be removed by implicit residual

averaging.

It is worthwhile to notice additional published work on nmltigrid schemes for hy-

personic flows. Decker and Turkel [10] analyzed the effect of boundary conditions and

Runge-Kutta coefficients on multigrid convergence for hypersonic inviscid flows. Lcclercq

[111 analyzed two-level multigrid cycles with multistage schemes and upwind differencing

in one dimension, and she presented two-dimensional computations of hypersonic flows on

unstructured meshes. As a means to remove stiffness associated with high-aspect-ratio

cells, Blazek et al. [12] introduced an. upwind-biased form of the residual smoothing 1)y

which higher Courant numbers could be obtained. Thomas [13] used nmltigrid in combina-



tion with third-order upwind differencing and implicit approximate factorization schemes.
Koren and Hemker [14] solvedthe steadyEuler equations with multigrid and point relax-
ation applied as the smoother. Using damped restriction and upwind prolongation, they
reported impressiveconvergencerates for high-speedflows around bhmt bodies.

The present paper describes recent efforts to understand and to improve the use
of multigrid schemesfor the computation of hypersonic flows. First, various two-level
nmltigrid schemeswith and without semicoarseningare introduced. Then weuse Fourier
analysisof the schemes,whenapplied to the two-dimensionalconvectionequation, in order
to study the behavior of their components. For each multigrid approach, the solver uses
upwind discretization combined with an explicit multistage scheme.We next consider the
numerical solution of the Navier-Stokesequations for hypersonic flows. In Section 5, the
basicelementsof the flow solverfor theseequationsaredescribed. Somedetails concerning
the application of the time-stepping schemeto fine and coarsegrid problemsarepresented
in the first part of Section 6. The extension of the two-!ew'l schemesto multilew'l ones
is then discussed.Elementsof multigrid that are of particular importance fi)r high speed
flow computationsare given. In the results section,we consider three different hypersonic
flow problems to assessthe capabilities of the multigrid schemes.The effect of stiffness,
arising from coordinate grids with high-aspect-ratio cells and from flow alignment, on
the performanceof the multigrid methods is examined. The benefits of semicoarsening
are clearly demonstrated. Moreover,with the semicoarseningstrategiesbeing considered,
good convergencerates are obtained for Reynolds numbers up to 200 x 10Gand Mach
numbers up to 2,5.



2 Multigrid Strategies

To set tile stage for the discussion relating to multigrid in subsequent sections of this

paper, we first briefly describe the nmltigrid method and different execution strategies

that will be considered. The nmMgrid approach is based on the Full Approximation

Scheme of Brandt [151. The grid transfer operators are those considered by Jameson

t e[1]. (.oars r meshes are obtained by eliminating alternate mesh points in each coordinate
direction. Both the solution and the residuals are restricted from fine to coarse meshes.

A forcing function is constructed so that the solution on a coarse mesh is driven by the

residuals collected on the next finer mesh. T!le corrections obtained on the coarse mesh

are interpolated back to the fine m('sh. The multigrid schemes investigated within the

present work are displayed in Figure 1. Figure 1 a.) shows a two-level scheme with full

coarsening. Ilestriction of the solution from the fine mesh, (m,n), to the coarse mesh,

(m/2,n/2), is (lone by injection, whereas full weighting is used fl)r the restriction of the

residuals. Prolongation ()f the corrections is done by bilinear interpolation. Figm'e 1 b)

shows a scheme with semieoarsening in the different coordinate directions. Again, injection

and full weighting are used in the restriction process. TILe corrections obtained on the

coarse meshes are averaged before adding them to the fine mesh. This is indicated by the

numbers at the "tip" arrows. Due to this averaging, half of the individual corrections on the

coarse meshes is lost. It is, therefore, anticipated that the scheme in Figure 1 a) should be

eomputationally more efficient, provided there is enough high-frequency damping obtained

with the smoothing scheme of the fine mesh. In order to overcome this deficiency of the

semicoarsening scheme, two more variants are considered. For the scheme of Figure 1

c), the solutions oil the coarse meshes are computed sequentially. Hence, the corrections

obtained on the (m/2,n) mesh can be used to update the (re,n/2) mesh before time stepping

(as indicated by the horizontal arrow). The sequential update of the second coarse mesh

allows the full amount of corrections to be passed up to the fine mesh. Note that this

mul_igrid variant is not compatible with the idea of parallel computations. An interesting

compromise between schemes of Figures 1 b) and 1 c) was suggested t75' Van Rosendale

[16] (Figure 1 d)). Here, only the corrections common to both of the coarse meshes,

(m/2,n) and (re,n/2), are averaged, whereas the corrections to the modes living either on

(m/2,n) or on (re,n/2) are passed to the fine mesh in full. This scheme does allow paralM

computations fi)r the coarse meshes.

3 Fourier Analysis of the Scalar Advection Equation

A crucial factor in constructing an effective multigrid method is the selection of a

smoothing or driving scheme. Local mode (Fourier) analysis is generally applied to evaluate

possible smoothers on the basis of stability and high-frequency damping properties. The

screening of schemes is often performed with a single-grid analysis. Since a stable single-

grid scheme may not be stable for the multigrid process, the behavior of a smoother with

a particular multigrid strategy is needed. In addition, tile multigrid process can have

a substantial impact on the perfornmnce of the multigrid method. In fact, as we will

demonstrate in this paper, semicoarsening can provide significant improvement, relative

to full coarsening, in the damping of the multigrid, especially when there is a strong mesh



anisotropy due to high-aspect-ratio cells.
A two-grid or two-level multigrid analysishas been applied by Jameson[1], Muhler

[17], and Leclercq [11]using variousschemes(i.e., multistage time stepping, different types
of relaxation) fi_r solving the Euler and Navier-Stokesequations of fluid dynamics. In
[1] Jamesonintroduces a multilevel uniform analysis and considerstile linear adwx:tion
equation in one spacedimension. This approachrepresentsa departure from the standard
two-grid analysis given by Stiiben and Trottenberg [18], which forms the basis fi)r the
analysisusedin [17] and [11]. With the multilevel uniform analysis, fine-grid and coarse-
grid corrections are computed at all points of the fine grid. Then a nonlinear filter is

applied to remove tile coarse-grid corrections a.t fine-grid points not contained in the coarse

grid. The filtering produces additional errors in the form of a carrier wave with a frequency

depending on the fine-mesh spacing. This analysis does not allow fl_r the coupling (aliasing)

effects due to the restriction operator (fine to coarse grid transfer operator) in the nmltigrid

method. However, it does offer the advantages of simplicity and application to more than

two-level schemes. Thus, it allows the rapid comparison of multigrid algorithms. If a

multigrid method is unstal)le or inefficient according to this analysis, then it is probably
not a reasonat)le scheme.

In this section, we consider the scalar two-dimensional advection equation. The mul-

tilevel uniform analysis of [1] is extended to two space dimensions and applied to fldl

coarsening and semicoarsening strategies.

Consider an initial value problem governed by the scalar advection equation

(x, y) C f_, (3.1)

where the linear operator is

a>0, b>0,

the domain f_ C )1_2, and t C ?t_+. Assume a periodic boundary condition for the scalar

function w(x,g,t). Let f_ = {(x,g)" 0 <_ x <_ 1, 0 <_ g <_ 1}. Define a fine grid G I and

coarse grids G_,/ (l = 1, 2) that cover the domain _ such that G_,t C Gf. We generate

grids G_,l by eliminating every other mesh line of Gf in one or both coordinate directions.

First we describe the fine-grid discrete problem. Let the grid G I contain m I. x nf cells and

have uniform spacings aX:r1 and &Y/" Let the discrete function (wf)i,j reside at the G I

mesh point (i&xi, jAyd). At each point (i, j), we consider a corresponding cell (C/);,j with

corners at (i-1/2,j- 1/2), (i+ 1/2,j-1/2), (i+ 1/2,j+ 1/2), and (i-1/2, j + 1/2). Suppose

we approximate the spatial derivatives of (3.1) with first-order upwind differencing. Then,
we obtain

/_:./'_( lb j')i,j ---- --_/'g( [(u,f)inj -- (lu f )in._l,j] -- N,/ [( _'J)i_j - (uJ f )i,j-1] ,
(3.2)

where the Courant nunfl)ers are

=



and
Z__tf

A( = aAyf, /_ -= b/kxf, O-f -- m_-_f"

The superscript n denotes the time level nAt. If we estimate tile time step /___tf by

NAf_s (3.3)
Ats = aAyf + bAx I '

it follows that

aN bNA/ (3.4)
N_ - a + bAf' N° - a + bAf'

where N is the Courant-Friedrichs-Lewy (CFL) number for an explicit time-stepping

scheme, and A I is the cell aspect ratio Ax//Ay I. Taking a Fourier transform of (3.2), we

obtain

dtb f _
Aty dt -[N_f(O_)+N"f(O")](&I)"' (3.5)

where

f(O) = (1 cosO) +isin0,

and i = v/-Z] -. The transformed discrete function is

mi--1 n!--I

(' f)k,,k, = Ax//kg$ E E (wy)it,J, e_'p[-i(ilO< +jlO°)]'

il:0 jl=0

(3.6)

where the phase angles 0( and 0,1 are given by

o_=9_kl, o°=2_ k2,
?7_f n, f

with wave numbers

1 I I 1

[C1 : -- ( -_ ?71f -- 1),''',-_mf, [_:2 = -- ( -_n f -- 1),''-, _ n s .

Equation (3.5) can be rewritten as

,5,_:s= (_::)"+_- (_::)"= -z(o_,o,,)(_:)', (3.7)

with Z being the Fourier symbol for the difference operator. Consider the explicit p-stage

scheme

(w:)(°) = (ws)"

(Wf) (l) :(wf)O--o_lo'f(t_f) (t-l), l: 1,2,'",p (3,8)

(w)(_+_) = (wf)(.),



where R I is a residual function defined as

Rf = A_-_ff_fwf. (3.9)

Using this scheme and (3.7), one can always represent the change in ff, f by

5_, f = - P( O_ , O,,)Z (O_ , 0. )( _, : ) _,

and the symbol of the time-stepping operator F is given by

(3.10)

P(Oe, 0,) = % - %,%-1Z + %%_1%_2Z 2 ....

- (-1F(%%-1%-2""" _l)Zp-1.
(3.11)

In (3.11) we have assumed that both the convective and dissipative parts of the symbol

Z are evaluated on each stage of the time-stepping scheme. This scheme is a member of a

general class of (p, q) schemes' The p refers to the number of Stages, and q designates the

number of evaluations of the dissipative contribution. Suppose we have a (p, 2) scheme.

Let

ZR = re(Z), Z_ = i. _r.,,_(Z).

Then, ifp >_ 3, the P of (3.11) is replaced by

-- o_p(o,,1ZR -[-oQ__IZI)Z_ -[-O:pO!p_l(OllZR Ac-Olp_2Zi)Z) ....

-(-l)P-'(ep%_,-••a3)(a,Zn + a2Zz)Zf-3

+ (-1)p-a(C_pap-1 •..o_I)ZZf -2.

(3.12)

In this paper, wc consider a (5, 3) scheme where the dissipative evahmtions are weighted.

For this scheme, the symbol of the residual flmction corresponding to the (k + 1)th stage

is written as

[ ]R(k+l) = a-1 ZIff, (k) + Zn 7kith (0 , 7kl

l=0 l:0

= 1. (3.13)

The weighting factors are as follows:

700 = 1,

710 : 1_ 711 : 0,

720 =F3, 721 =0,

730 =F3, 731 =0,

740 =F3Fs, 741 =0,

722 :_3_

732 :_3, 733 : O,

742 =_3P5, 743 =0, "]'44 _--- "/5, (3.14)

where rz = (1 -_-3), 1-'5 = (1 -75), _3 = 0.56, and _5 = 0.44.

time-stepping operator is given by

The symbol of the

fi" = a's [1 - oL4ZI(1 - oL3Zi) -- ot4Z3Zl(oz3Z2ZI - _3ZR) -- F5-_3Z3ZR ] ,

6

(3.15)



where
ZI ---_ ZI + -_5 ZR,

Z2 z Z I -}- _3 ZR,

Z3 = a2(1 - c_,Z1).

One can extend the stability range of the explicit scheme of (3.8) with implicit residual

smoothing. For two dimensions, the residual smoothing can be applied in the form

(1 -/3_V_A_)(1 - fl,,V,A,,)_(J ) = R_ t), (3.16)

where the residual (7_y) (0 is defined :,sing (3.9) as

• (T_I)(t) = o-/(Rf)(0, (3.17)

A and V are tile usual forward and backward difference operators, and l = 1,..., p, with p

being the number of stages in the scheme. The variable coefficients fl_ and/3, I are defined

as follows:

/34 = max { 1

{1= max

N-_ 1+ _/,r,4 - 1 ,0 ,

(N _1)21}_-; l+_/'r;_ 1 1 ,0 ,

(3.18)

with N/N* the ratio of the Courant number for the smoothed scheme to that of the

unsmoothed scheme, and rq_ = _0/)_. A reasonable value for the parameter _/, is 0.125.

In practice, this implicit procedure allows the explicit stability limit to be increased by a

factor of 2 to 3. For additional details concerning implicit residual smoothing, see [3,5].

If residual smoothing is applied on each stage of the time-stepping scheme, then the

symbol Z(O_, 0,_) appearing in (3.10) and (3.11) is replaced with

= = u'r,; 1, (3.19)

where

F_ = 1 + 2/3_(1 - cos 0_), F,_ = 1 + 2/3,1(1 - cos 0,,).

Before considering the discrete problem on some coarse grid Gc,1, we define the re-

striction operators and their corresponding Fourier symbols. Assume that Go,, contains

(my�2) × (hi�2) cells (full coarsening). Let T} and Q} denote the operators that transfer

the fine-grid solution and residual to the coarse grid. Since any coarse-grid point belongs

also to the fine grid, we have simple injection for the solution transfer operator. Thus,

TfC,1 t-_c,1 = 1. (3.20)
Wf : Wf, -_f

To ensure the conservation property for the residual transfer, we define

2t2 RQ_/I(RI)i,j = 4tL_t y( I)i,j, (3.21)

7



where /l_. and py are the standard averaging operators for the x and y directions. The

symbol of this operator is given by

(_¢,1 = (1 + cos0_)(1 + cos0o). (3.22)f

If we now apply the p-stage scheme, we obtain at the corresponding point of the G¢,1

problem

(Wc,,)(°)= (w) + = (w)n+ '

(IUc,1) (l) = (Wc,1) 0 --C_IO'c,1 [(/_c,1) (/-1) "Jr Pc,l], I = 1,2,...,p (3.23)

O,,c,,)(o+' ) = (w_,i)(.),

where the forcing flmction

and

P¢,_ = QCI(R:) + - (Re:)(°),

(Rs) + = AOs£s(ws) +

(Rc,,)(°) = Aa_,,C¢,,(w.,,)(°).

By successive substitution in (3.23), one can easily show that

_¢,, = -_¢,, _¢,1_c,1@'(:_)+

or

with

Since

then

^ A_,1 -1Zft5- _6Wc: =--#_,1S_,13_,1_41 o"I

(_,_)+ = (_)" + 6_i.

OZ's)+ = .:O_'s)",

where the fine-grid amplification factor is

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

g: = 1 - F:Z:. (3.30)

Moreover, in this case, where we are considering full coarsening, the fine-grid approximation
is

('Z)f) n-i-1 = (_'f )" _- ¢_'_'f H- _11)c,1,

and thus,

(tS,) "+' [1 Fc, ;_ Ac'la-/1Zi] ,= -- ,Dc,IGc,lt_f g/(zSl)"

= gcgl(dV)",

(3.31)



with gc denoting the coarse-grid amplification factor.

We now apply the multilevel uniform analysis to two semicoarsening multigrid strate-

gies (see Figure 1). Let Ge,_ and Go,2 be two coarse grids containing (rn//2) x n I and

m I x (hi�2) cells, respectively. In the case of semicoarsening with simple averaging, we

express the Fourier transform of the update for the fine-grid solution as

(_f)n+l =(17uf)n .3t_ (_170f-Jl-O.)l(_/.0c, 1 JI- /M2(_/Oc,2, (3.32)

where wl = co2 = 1/2. Then the amplification factor associated with the coarse grids is

given by

1 [_,c,,_c, Ac,I --1 _-" _'_ Ac,2 -1Zf}.- lo'c,ll,_f of Zf-3L/_c,2_c,20c,2_,_f ofgo=l- 2 (3.33)
1. J

With sequential semicoarsening, we can use weightings of 1.0 for the coarse-grid corrections

by improving the estimate of the initial solution on either grid Gc,2, as indicated in Figure

1, or Gc,1. The coarse-grid correction &bc,1 is given by (3.26), and the other one g_bc,2 is

given by

(_1_c,2---_ --Pc,2 [Sc,20"c,20_ '2- 2c,2Pc,lSc,lO'c,lOCi 1] o';1Zfgf(l-_f) n. (3.34)

By substituting (3.26) and (3.34) into (3.32), one can compute the amplification factor

g(O¢, 0,).
Before we applied the two-dimensional muItigrid analysis just discussed, we examined

the stability properties for a large number of multistage time-stepping schemes, including

the schemes published in [19,20]. We performed this preliminary study with the one-

dimensional advecfion equation for a single grid. Figures 2 and 3 show two examples from

this study. The dash line represents the locus of the symbol of the difference operator,

and it must lie inside the absolute stability curve. The dissipative term for first-order

upwind differencing is evaluated three times for both the three- and five-stage schemes.

in the case of the (5,3) scheme, the dissipation is computed on the first, third, and fifth

stages, and the weights are those given in (3.14). While the (3,3) scheme exhibits fairly

good high-frequency damping, there is a substantial improvement in damping with the

(5,3) scheme, at the expense of a little extra work. The coefficients for the (5,3) scheme

are those determined by Tai [21].

In Figures 4 and 5, we present contours of the amplification factor g(O_,O,j) for the

following cases: 1) single grid, 2) full coarsening, 3) semicoarsening with simple averaging,

4) sequential semicoarsening. For each case, cell aspect ratios of one and ten are shown.

The improvement in damping with the two-level schemes is evident. There is greater

compression of g(O_, 0,) to the origin with the semicoarsening strategies. The aspect ratio

(A) of ten contours indicate that the one-dimensional behavior of the driving scheme in

the r/direction is recovered for large A. They also show that modes associated with the

direction are damped much better with the semicoarsening schemes.

According to the current analysis, where the nodal point of interest is assumed to be

common to all meshes being considered, the semicoarsening scheme with selective averaging

has the same damping behavior as the one with simple averaging. In practice, however,

we observe the expected improvement in damping when using selective rather than simple

averaging. This will be demonstrated later.

9



4 Governing Flow Equations

Let fl, u, v,p, T, E, and H denote, respectively, the nondimensional values of density,

velocity components in the x and y Cartesian directions, pressure, temperature, specific

total internal energy, and specific total enthalpy. In addition, let e, and eu be unit vectors

of tile Cartesian coordinate system (x, y), and let n be a unit vector normal to the surface

,5 enclosing a volume !2. Then the two-dimensional, unsteady Navier-Stokes equations,

neglecting body forces and heat sources, can be written in conservative form in a Cartesian

coordinate system as

0 /£ Wd12 + fs (gr'c + ,T',,) rids = O,Ot
(4.1)

where the solution vector W and the tensors brc, .Y_ are defined as

W =

P

fl 'lt

,J:c=
pv

fie

flue. q- flvey

(p'u 2 + p)ex + pure u

puve_, + (pv 2 + p)ey

puHe, + pvHey

~ --1
, _v-_-Rc

axe, q- Txyey

Txyex q- O'yey

(uax + vrxy - q_)ex+

+(uv, y + ray - qy)ey

with

(& 0,_) &_. = -A \o. + N - 2_,

Ou Ov Ov_" : -_ aTx+ N) - 2"N'

& 0v'_

P
H=E+-,

fl

The scaling factor /_e-: = v,SMRe -1, with M and Re representing the Mach and

Reynolds numbers, respectively. In this paper, the working fluid is air, and it is assumed

to be thermally and calorically perfect. That is, the equation of state is

p=(f-1)p(E-(u 2+v2)/2), T=p/p (4.2)

10 U-
E



The quantities p and A are the first and second coefficients of viscosity, respectively, and

A is taken to be -_p2 (Stokes hypothesis). Sutherland's law is used to determine the

molecular viscosity coefficient p. The coefficient of thermal conductivity (k) is evaluated

using the constant Prandtl number assumption. The effect of turbulence is taken into

account by using the eddy-viscosity hypothesis. In the present work, the turbulence model

of Baldwin and Lomax [22] is used.

5 Spatial Discretization

The numerical approximation of (4.1) follows the method of lines, which decouples the

discretization in space and time. The physical domain around the aerodynamic body is

divided into quadrilateral cells by the generation of a body-fitted grid. The discrete values

of the flow quantities are located at tile vertices of the mesh cells. For the flux calculation,

an auxiliary grid is used, which is defined by connecting the cell centers of the original cells

(see Figure 6). The integral equation (4.1) is approximated by the spatial discretization,

yielding

_Wi,j_d l,_,jl ((Qc)_,j + (Q_)/,j), (5.1

where Vi,j denotes the area of the control volume surrounding tile grid node (i,j). (Qc)i,j

and (Qv)i,j represent approximations of the convective flux and viscous flux, respectively.
The viscous fluxes are approximated by central differences using a local transformation

from Cartesian coordinates to the curvilinear coordinates [4]. In the following some de-

: tails of the upwind discretization of the convective terms are discussed. The inviscid flux

through the interface, (i + 1/2, j), is evaluated as

1 1

(Qc)i+l/2,j = -_ [(J2"c)i,j -'_ (._'c)i+l,j] " Si+l/2,j -Jr- _ Ri+l/2,jc_i+l/2,j.
(5.2)

Here, Si+l/2, j is the surface vector of face (i + 1/2,j), and R is the right eigenvector

matrix of the flux Jacobian in transformed space. Equation (5.2) separates the inviscid

numerical flux into the sum of an averaged term corresponding to central differencing and

a dissipative term, which adapts the discretization stencil in accordance with local wave

propagation. The flux function • is based on the second-order accurate up,vind TVD

scheme of Yea and Harten [23]. Here, we do not repeat the formulation for _, but simply

indicate some important details in the present numerical evaluation of _. Second-order

accuracy is obtained with the limiter

O:i-1/2,j(O_i+l/2,j 2 + £) + O:i+l/2,j(O_i-1/2,j 2 + _)
gi,j = , (5.3)

O_i--1/2,j 2 At- O_i+l/2,j 2 "_ 2e

where a is the first difference of the characteristic variable, R-lAW, and e is a small

constant to prevent division by zero. The flow quantities at the face (i + 1/2,j) are

evaluated by Roe's averaging procedure [24]. Note that the scheme is identical to Roe's

first-order flux difference splitting for g = 0. Since Roe's scheme may violate the entropy

condition when the eigenvalues of the flux Jacobians vanish, the eigenvalues are modified

11



using an entropy function _. This entropy correction has to be carefully designedfor
viscousflow calculations. The shear layers along solid walls are numerically smeared,if
an entropy correction is applied to the eigenvMuesassociatedwith the convectivewaves.
Oil the other hand, if cells with high aspect ratios are present, additional support for
damping in the direction of the long side of a cell is neededin regionsof low velocities,
suchas stagnation points. Therefore, the correction of the eigenvalues• is constructed as
a function of tile cell aspectratio. For the convectivewaves,the function

( laJt,
IAg'12+__t

if _>5;
(5.4)

otherwise,

and for the acoustic waves

{ IhJI, if [,_JI >_ _5; (5.5)_(A_l) = la_'12+5_ otherwise.
25 ,

In equations (5.4) and (5.5), A_l represents the l-th eigenvalue of the transformed flux

Jacobian in the _-direction. The entropy parameter, 5, is given according to Mhller [25]

5 = 5)_(1 + (A,/A_)'), (5.6)

where A_, A, are the spectral radii of the flux Jacobians in the _ and 7/directions, 0 < w < 1,

and 0.1 < 5 < 0.5. If U = ue_ + vey, S_ and S_ are directed areas associated with the

and 9 directions, and c is the speed of sound, then

= IU. set + clS l, = IU. s,t +  lS,I. (5.7)

The blending coefficient, fl, accounts for the cell aspect ratio. It is given as

fl = max(t - )k/A,, _). (5.8)

It is shown below that _ should be zero for accurate computations of shear layers. Fur-

thermore, we will demonstrate that a wide range of flow problems can be solved accurately

with a single set of parameters, 5 = 0.25, w = 0.3, and t¢ = 0.

6 Time-Stepping Scheme for Hypersonic Flows

The basic elements of the time-stepping scheme have been outlined in Section 3,

and they are not repeated here. In the following sections emphasis is placed on recent

improvements to enhance robustness for hypersonic flow calculations.

6.1 Multistage Scheme for the Fine and Coarse Meshes

Consistent with the results for the advection equation in Section 3, we have observed

the need to pair spatial discretization and particular time-stepping schemes for the solution

12
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of the Navier-Stokes equation. The most robust choice of spatial discretizations found to

this point is to use the second-order upwind scheme of Section 5 on the fine meshes and to

set the limiter to zero everywhere on the coarse meshes. An alternative choice taken in [6,8]

is to use scalar second-difference dissipation terms on the coarse meshes. This turned out to

be less robust because the second differences are less diffusive with respect to the acoustic

modes; also, the central-difference scheme allows waves to travel upstream in supersonic

flow. As indicated previously, a five-stage scheme with three evaluations of dissipation and

the coefficients of Tai [21] is used for time advancement. Tile large viscous stability limit

of this scheme is shown in Figure 3. Disturbances are most effectively expelled out of tile

computational domain by using local time stepping and implicit residual smoothing [5,6].

The smoothing of the residuals allows a Courant number ratio (CFL/CFL*) as high as

2.5 when CFL* = 2.3, which is roughly the stability limit of the explicit scheme. The

time step is determined by the spectral radii of the inviscid flux Jacobians in the different

coordinate directions, ,_ and _0, as

V
At = CFL (6.1)

)_ + A,1

In order to stabilize the schemes in regions where the viscous stability limit is more

restrictive than the inviscid limit, the coeificients of the implicit residual smoothing oper-

ator are locally increased, as outlined in [6,8]. At strong shocks, however, high Courant

numbers are not appropriate. Consequently, an adaptive time step is employed. By using

the nondimensional second difference of the pressure as a switch, the value of CFL is

locally reduced to about two at the shock.

6.2 Multigrid Schemes

For the numerical solution of the Navier-Stokes equations, the two-level strategies

presented in Figure 1 are extended to multilevel schemes, as displayed in Figure 7. The

only differences between the two-level schemes and the multilevel schemes occur in the

restriction process. Whenever two "down" arrows meet at a coarse mesh, averaging is

used to obtain the restricted variable. The multilevel arrangement of the coarse meshes,

shown in Figure 7 b), was first given by Mulder [17], who used semicoarsening in order

to solve the flow alignment problem. Suitable coordinate meshes for thin boundary layers

exhibit mostly cells with high aspect ratios in the surface-aligned direction. Figure 8

displays further variants of semicoarsening for these situations which are computationally

cheaper than the semicoarsening schemes shown in Figure 7.

One may notice that the central restriction and prolongation operators discussed in

Section 2 allow for upstream propagation of disturbances in supersonic flow. Further-

more, the corrections given by the standard multigrid scheme near strong shocks lead to

divergence of the calculation, particularly during the initial part of the transient phase.

Therefore, the restriction operator is damped by using

Rid = max(1 - ei,j (n), 0)/_i,j, (6.2)

where [ti,j is the standard restriction operator, and ei,j (n) is a switch to detect strong

shocks,

ei,j (n) = k (n) max(ui,/]/+i,/2i--1,//j, btj+l,/]j--l), (6.3)
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Pi-l,j- 2pi,j + Pi+l,j
Pi-l,j + 2pi,j + Pi+l,j

Vj =
Pi,]-I -- 2pi,j -1- Pi,j+l

Pi,j-1 + 2pi,j + Pi,j+l
(6.4)

The damping coefficient, k (n), is given a value of about one in the start-up phase of the

multigrid process and is decreased to a value of about 0.4 at later cycle numbers in order to

allow for good asymptotic convergence rates. This is in line with the restriction damping of

Koren and Hemker [14], who based their damping coeffÉcients on a more physical analysis.

A fixed V-type cycle with time stepping on the way down is used to execute the multi-

grid strategies described above. The robustness of the overall scheme is much improved

by smoothing the resultant coarse-mesh corrections before they are passed to the finest

mesh. The smoothing reduces high-frequency oscillations introduced by the linear interpo-

lation of the coarse-mesh corrections. The factored scheme equation (3.16) with constant

coefficients around 0.1 is used for this smoothing. Also, the application of Full Multigrid

(FMG) provides a well-conditioned starting solution for the finest mesh being considered.

7 Numerical Results

Three different hypersonic flow cases are used to assess the capabilities of the multigrid

schemes. These are laminar Mach 10 (M = 10) flow over a compression ramp, turbulent

flow over a slender forebody at high Reynolds numbers, and laminar flow over an airfoil at

high Math number and high angle of attack. Table 1 gives a summary of the geometries

and tile flow parameters of the test cases. In this table, Tinf is the dimensional free-

stream temperature, and Tw is the specified wall temperature. Also, the finest grid used

for each flow computation is characterized by the streamwise and normal leading-edge

spacings (Asl_, Ant_), along with the normal spacing (Ant_) at the end or trailing edge of

a geometry.

The flow over the compression ramp is identical to Case 3.2 of the Workshop on

Hypersonic Flows for Reentry Problems, Part II, held in Antibes, France, 1991. This

allows comparisons with the performance of other computational methods published in

[26]. Figure 9 displays the coordinate mesh generated for this test case. The low Reynolds

number allows for a mesh with moderate aspect ratios between 5 and 50 near the wall.

The 129 x 81 mesh is successively coarsened down to 9 x 6, which yields 9 grid levels with

semicoarsening and 5 levels with full coarsening. It is expected that the semicoarsening

strategy should eliminate most of the stiffness associated with aspect ratio. The converged

flow solution is shown in Figure 10. The computed extent of separation in the corner is

somewhat smaller for the coarse mesh than for the fine mesh. Note that the result of the

fine mesh agrees very well with grid-converged computations published in [13].

In the next figures, we analyze the performance of the different multigrid schemes.

For this purpose, computations are started from a solution which was converged to about

plotting accuracy. Figure 11 compares the different schemes of Figure 7. The numbers

indicate the final convergence rate (r) of the schemes and the rate of data processing

(RDP) on a CRAY-YMP to advance one gr_d point by one multigrid cycle. It is seen that

the sequential semicoarsening scheme (Figure 7 c)) gives by far the best convergence rate.

For this scheme, the effect of the modifications shown in Figure 8 is investigated in Figure

12. One finds that the meshes obtained by fldl coarsening and by semicoarsening in the

=

=_

m
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direction normal to the wall are both important to achievegood convergencerates. From
Figures 11-12,we conclude that semicoarseningwith a selectednumber of coarsemeshes
is most effective for this flow problem; however, fldl coarseningdoes a surprisingly good
job becauseof its low work count. Figures 13-14showimprovementswhich may be gained
by using more than a single time stepon the coarsemeshes.The full coarseningscheme,
Figure 13, gives only marginal gains when using more than two time steps on the coarse
meshes. The sequential semicoarseningscheme,Figure 14, gives an initially improved
rate, whereasthe final rate is not affectedby more work doneon the coarsemeshes.It is
thought that the capabilities of the multigrid approachareput to full usefor this test case.
Further improvementsare forseenonly if the remaining stiffnessin the discrete equations,
that is the differencesin the characteristic speedsof acoustic and convectivewaves,can
be overcomeby someproper means. A comparison betweensingle mesh and multigrid
computations is given in Figure 15. We find that the nmltigrid schemewith sequential
semicoarseningconvergeswithin one tenth of the computing time required fi_r tile single
meshscheme.

The grid generatedfor the ramp flow is well suited to study the grid-alignment problem
which occurs for inviscid flow over the ramp. Figure 16 showsconvergencehistories of
variousschemesobtained by usinga slip-wall boundary condition and omitting the viscous
terms in the governing equations. Generally, convergence is worse for the inviscid flow

because the convective eigenvalues of the flux Jacobian in the normal direction are zero

for most of the grid points. The second-order solution does not converge, regardless which

multigrid strategy we use. With the flux limiter, equation (5.3), set to zero everywhere on

the fine mesh, the solution converges, provided we use all the coarse meshes introduced by

the semicoarsening approach. Note that this result is identical to the findings of Mulder

[27]. We have to conclude that the present multigrid schemes cannot cope with the grid-

alignment problem in the context of high-order spatial discretizations.

The flow over a slender forebody is chosen to represent a generic configuration corre-

sponding to a high-speed civil transport aircraft or an air-breathing space transportation

system with low wave drag. The high Reynolds numbers yield thin boundary layers, which

can only be resolved with highly clustered coordinate meshes and large aspect ratio cells.

The mesh used for the present investigations is displayed in Figure 17. The cells near the

wall have aspect ratios up to 25000. The flow computations were done with fixed transi-

tion at 2 percent chord and with the assumption of an adiabatic wall. Figures 18-20 show

the solution obtained on three successively refined meshes. Both the distributions of skin

friction and wall temperature are accurately computed, even with just 25 points in the

normal direction. The effect of numerical dissipation introduced by the entropy correction

function _, equations (5.4)-(5.8), is shown in Figure 21. If the value of w is increased to

2/3, which is a typical value used in central-difference codes [2,4], the wall temperature is

badly reproduced on the coarse mesh. Furthermore, if we introduce numerical dissipation

for the convective waves in the direction of the short side of the cells by setting _ > 0,

the shear layers are numerically smeared; and hence, the wall temperature is adversely

affected. We notice that a value of _ = 0,1, which again is a representative dissipation

level of current central-difference codes, yields reasonable solutions. However, the conver-

gence behavior is not changed much with this relatively low level of numerical dissipation.
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Hence, all the results presented for the three test cases were obtained with a single set of

parameters, 5 = 0.25, o0 = 0.3, and _ = 0.

Next we investigate the convergence behavior of the multigrid schemes. The fine mesh

with 257 × 97 points allows 11 grid levels to be used with semicoarsening. First we notice

that it is not possible to run the full diamond-shape tree of coarse meshes. Obviously, the

time-stepping scheme is not well suited to handle the extreme aspect ratios which occur

on the 17 × 97 mesh, for example. Using the proper half of the diamond, which includes

the meshes with relatively low aspect ratios, the numerical solution converges. Figure 22

displays a comparison of the different multigrid strategies. The computations are started

from a preconverged solution. The computer time to update a grid point by one multigrid

cycle, RDP, and tile final convergence rate, r, are also included. Again, the scheme with

sequential semicoarsening converges best. The differences between the multigrid schemes

for this case, having cells with very high aspect ratios, are larger than for the ramp flow.

The final convergence rate of the scheme with sequential semicoarsening is 15 times better

than the rate with full coarsening. A comparison of the performance for the complete

FMG process is given in Figure 23. The sequential semicoarsening scheme takes 194 cycles

and 570s CPU on a CRAY-YMP to reduce the averaged residuals to 10 -2 on the fine

mesh. The scheme with full coarsening takes 1024 cycles and 1430s, and the single mesh

code takes 7762 time steps and 6190s to achieve the same convergence level. Note that

residuals of 10 -2 correspond to a solution which is converged within plotting accuracy. If

we compared computer times to reach lower levels of residuals instead, the results would

have been even better for the multigrid scheme with semicoarsening.

Laminar flow over an airfoil at M = 25 and oe = 30 degrees is chosen as a final

test case in order to demonstrate that the multigrid method used here can handle very

strong shock waves and highly expanded flow. Figure 24 shows the 257 × 81 mesh . The

numerical flow solution, which is represented in Figures 25-28, features a large separated

flow region with two distinct vortices. The resulting shear layers are not well aligned

with the coordinate mesh; and hence, considerable numerical smearing is expected in

those regions. The difficulties in resolving this highly separated flow are illustrated by a

comparison of the results obtained from meshes with different grid densities. Obviously,

the mesh with 129 × 41 points is still too coarse to resolve the separated flow region. The

convergence history of the sequential semicoarsening scheme is shown in Figure 29. The

residual drops 8 orders of magnitude within 400 nmltigrid cycles. Note that the largest

values of Op/Ot are located at the shock wave. The solution converges to plotting accuracy

within 100 multigrid cycles.
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8 Conclusions

New multigrid schemes for hypersonic flow computations have been investigated. The

basic solution algorithm employs upwind discretization and explicit multistage time step-

ping. Various multigrid schemes with semicoarsening are introduced in order to overcome

stiffness resulting from the mesh cells with high aspect ratio which are necessary to resolve

viscous flows. The basic components of the algorithm are examined with Fourier stabiliy

analysis applied to the two-dimensional advection equation. Both the results of the Fourier

analysis and the computations of high Reynolds number flows suggest that the semicoars-
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ening approach is effective. For the first time, convergence rates for hypersonic viscous

flows are shown which are similar or even better than those previously published for the

transonic regime [3,4]. Further work is required to make the computational scheme less

expensive. This is especially true for the coarse meshes used within the semicoarsening

approach, which make up the major portion of the overall work count of the scheme. Fur-

ther improvements of convergence rates seem possible if stiffness arising from the difference

of characteristic speeds of acoustic and convective waves can be overcome. For this pur-

pose, new techniques such as preconditioning of the flow equations [28,29] or characteristic

residual smoothing [12] seem to hold promise.
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Figure 1: Two-level multigrid schemes investigated in the present work
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Figure 2 Stability plots for 3-stage Runge-Kutta scheme with

first-order upwind approximation (coefficients: 0.105, 0.325, 1.0)
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Figure 3 Stability plots for 5-stage Runge-Kutta scheme with first-order upwind approximation

and 3 evaluations of dissipation (coefficients : 0.2742, 0.2067, 0.5020, 0.5142, 1.0)
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Figure 4 Contour plots of amplification factor for 5-stage Runge-Kutta

scheme with first-order upwind approximation and 3 evaluations

of dissipation (coefficients : 0.2742, 0.2067, 0.5020, 0.5142, 1.0)
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Figure 4 Contour plots of amplification factor for 5-stage Runge-Kutta

scheme with first-order upwind approximation and 3 evaluations

of dissipation (coefficients: 0.2742, 0.2067, 0.5020, 0.5142, 1.0)
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scheme with first-order upwind approximation and 3 evaluations
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Figure 7: Multilevel schemes

28
m



_ith selection o_ co_rse _eshes

2g



0.050

>,-

0.000

0.000 0.050 O.1O0 O. 150 0.2 O0
X

Figure 9: Coordinate mesh for ramp-flow problem with 128x80 cells

0.050

>-

0.000 h-

0.000 0.050 0.100 X 0.150 0.200

a) Math contours

0.25

0.20

a0.15
(9

0.10

0.05

0.05

0.04

0.03

0.02

0.01

0.00

-0.01
0.0

i

---65x41 mesh /129x81 mesh

tO

I I I I I I I 1

0.4 0.8 1.2 1.6

x/c
b) Pressure coet_cient

Flow solution for ramp-flow problem

30

---65x41 mesh

129x81 mesh,

I I I I I I I J

0.00 0.4 0.8 1.2 1.6

0.0 X/C

c) Skin friction

Figure 10:



-11

0.906

¢'I

"_--3
c_

"----4
hO
O

,-4

-5

-6

-. \

'1

RDP = 1891,s
= 0.869

-7 j ,t = , , n
0 40 80 120

multigrid cycles

Figurell:Influenceofmultigridstrategiesonconvergence _rramp-flow problem

Figure 12:

-1I

-- \RDP = 77/_s

¢'_ .... _,.-_._ ....

__ 0.960c_ -4

r--I x_,-- 5 / r = 0.922

= 0.8??

- 6 _ = 189_J
r :- 0.869

- 7 t I I _ I __1

0 40 80 120

multigrid cycles

Influence of selected coarse meshes on convergence for ramp-flow problem

$1



Figure 13:
coarsening
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Figure 24: Coordinate mesh for NACA 0012 Figure 25: Maeh contours for NACA 0012

with 256x80 cells airfoil at h/[ = 25, c_ = 30 °
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